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We report numerical studies of the cluster development of two-phase flow in a steady-state environment of
porous media. This is done by including biperiodic boundary conditions in a two-dimensional flow simulator.
Initial transients of wetting and nonwetting phases that evolve before steady state has occurred, undergo a
crossover where every initial pattern is broken up. For flow dominated by capillary effects with capillary
numbers in order of 10−5, we find that around a critical saturation of nonwetting fluid the nonwetting clusters
of size s have a power-law distribution ns�s−� with the exponent �=1.92±0.04 for large clusters. This is a
lower value than the result for ordinary percolation. We also present scaling relation and time evolution of the
structure and global pressure.
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I. INTRODUCTION

The complex nature of multiphase flow in porous media
has acted as motivation for extensive studies in the recent
years. Different types of fluid displacements in porous media
play important roles in natural processes, many of them of
large practical importance such as oil recovery, soil mechan-
ics, and hydrology. Large quantities of petroleum and water
resources are hidden in fractured and porous stones and that
is of vast economic and social importance.

Two-phase displacement in porous media has been stud-
ied through seminal experimental work �1–3�, numerical
simulations �4–6�, and theoretical work including statistical
models and differential equations �7,8�. Dynamics of insta-
bilities in immiscible two-phase flow controlled by the inter-
play between viscous and capillary forces give rise to com-
plex pattern formations.

The traditional way of describing those situations has
been through either drainage or imbibition. That will give
rise to transient effects of front propagation such as invasion
percolation �IP�, viscous fingering, and stable front displace-
ment. The common feature of these effects is that they are
out of equilibrium, and the IP regime will eventually even
end with a static regime with immobile structures due to
large capillary barriers. Most experiments and simulations in
this area deal with systems where one and only one fluid is
injected into another until the injected fluid reaches the sink
of the system. In natural reservoirs of fluid in porous media
the situation is, however, dynamic and governed by the in-
terplay and competition between drainage and imbibition.
This is best described as a steady-state regime inside a rep-
resentative volume element where both drainage and imbibi-
tion occurs. Pure drainage or pure imbibition are pore-scale
concepts, and can therefore not alone be scaled up in a
steady-state situation.

In this paper we examine distribution of cluster forma-
tions in a pore-scale network under both steady state and

transients. This study contains both quantitative and qualita-
tive results of cluster distribution and dynamic evolution of
the phases. The model used in our simulations is mainly
similar to that proposed by Aker et al. �9� with later gener-
alizations by Knudsen et al. �10� to include biperiodic
boundary conditions. The boundary conditions in the flow
direction lets the fluid that leaves the system enter the system
again at the inlet of the model in a seamless manner.

This enables us to investigate steady-state flow which in-
flects the situation deep inside reservoirs. With both an in-
vading front of nonwetting fluid and wetting imbibition the
system will give rise to a blending of structure formations.
These formations are formed by the interplay of different
effects like fragmentation of large clusters, merging of
smaller clusters, and a diffusion of fragments.

This paper is organized in the following way. In Sec. II
we describe outlines of the model used for our simulations,
and in Sec. III we sketch the initial conditions used followed
by a discussion of the qualitative behavior of initial
transients.

Further, we discuss quantitative features of the simula-
tions in Sec. IV, prior to a scaling analysis.

II. MODEL

The main statistical models that reproduce the basic do-
mains of porous flow belong to the family of growth models
that obey the Laplacian equation �2P=0 where P is a pres-
sure field and with an interfacial growth rate q��P.

The simulations used in this work are based upon a basis
model of disordered media that consists of tubes orientated
45 degrees to the overall flow direction �9,10�. The network
has a coordination number of 4, and the arrangement of the
tubes is square planar. The tubes consist of both the pore
volume and the throat volume. The points where the tubes
meet are referred to as nodes. Randomness is incorporated in
the model by allowing the length of the tubes dij to be chosen
randomly within 30% of the mean length, i.e., the lattice
constant d, and the radii to be chosen from a flat distribution
r� �0.1d ,0.1d+0.3dij�.
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Distributions of fluid that we report are highly dependent
on saturation of phases and the capillary number �Ca�, where

Ca =
�Qtot

��
�1�

denotes the ratio between viscous and capillary forces, and �
is the largest viscosity rate of the two fluids, � is the surface
tension, � denotes the total input surface of the system, and
Qtot is the global flow rate in the system. The patterns that
form during invasion of a nonwetting fluid into a defending
wetting one are characterized mainly into viscous fingering,
capillary fingering, or stable displacement depending on Ca
and the viscosity ratio of the defending �1 and invading
phase �2 given by

M =
�nw

�w
. �2�

Our system of tubes is filled with two fluids, wetting and
nonwetting, respectively, each having a certain fraction of
the total volume, denoting nonwetting saturation Snw and
wetting saturation Sw. The fluids are separated through many
menisci. The model does not include film flow and only one
bubble is allowed inside one tube at the time. This means
that if more than two menisci are created within a tube dur-
ing the same time step, they are subsequently collapsed into
two menisci.

Since the fluids are immiscible, the meniscus gives rise to
a capillary pressure within the tube. The capillary pressure is
dependent on both the surface tension � and the radius of the
tube given by the Young-Laplace law

pc =
2�

r
cos � , �3�

where � is the wetting angle, i.e., the contact angle between
the wetting phase and the wall of the tube. In our model, the
tubes are considered to be cylindrical with respect to perme-
ability, but hourglass shaped with respect to capillary pres-
sure. The relation for the capillary pressure reads

pc =
2�

r
�1 − cos�2	x�� , �4�

where x is the normalized position of the meniscus running
from 0 to 1. The local flow rate q of a tube follows the
Washburn equation for capillary flow �11�,

q = −
k

�eff

	r2

d
�
p − pc� , �5�

where pc is given by Eq. �4� and the permeability k=r2 /8.
This permeability is taken directly from Hagen-Poiseulle
flow in cylindrical tubes. We define the effective viscosity as

�eff = �nwxnw + �w�1 − xnw� , �6�

with respect to the position of the nonwetting meniscus xnw.
The pressure difference between the inlet and outlet of a tube
is 
p.

To solve the transport equations we use the property that
no net volume can be stored in the nodes connecting tubes.

The net flux through a node is therefore zero and this gives a
set of linear equations to solve. To find the positions of me-
nisci in the tubes we integrate Eq. �5� forward with a pre-
defined time step, 
t, according to an explicit Euler scheme.
Inside a tube one meniscus moves with a front speed deter-
mined from the local flow rate q, but when a meniscus
reaches the end of a tube it is further distributed among the
other tubes with ingoing flux. Here it is crucial that volume
is conserved. Further details can be found in Refs. �9,10�.

The majority of existing models are quasistatic and there-
fore apply only when the capillary forces are dominant. This
model, however, accounts for dynamic effects and is there-
fore also capable of handling fast flow or flow with little
surface tension, hence a wider range of the capillary number
Ca.

Boundary conditions

Boundary conditions. Most experimental setups and simu-
lations are done on systems that are out of steady state. They
mainly deal with systems where one fluid is injected into
another defending fluid and ends when the invading fluid has
reached the sink of the model.

In order to simulate steady-state flow, we use biperiodic
boundary conditions. This is done by connecting the inlet
and outlet row, placing the system on a surface with one
extra dimension. In two dimensions this is easily pictured by
placing it on a three-dimensional torus as shown in Fig. 1.

To make the system develop in time, the global pressure
field 
P is applied over the row where the original inlet and
outlet rows meet. This is done by the use of ghost sites �12�
where the global pressure is applied.

With biperiodicity in the boundary conditions we will
have two invading processes that compete. One is the origi-
nal invading process as described above with a nonwetting
phase penetrating a wetting phase, but there will also be a
wetting phase displacing a nonwetting phase since the wet-
ting fluid imbibition from the system will enter it at the inlet
row.

III. INITIAL TRANSIENTS

In this section we describe the qualitative behavior of our
system as it evolves. As time progresses, the dynamic evo-
lution in our model will give rise to different transient effects
that eventually will lead to a steady-state configuration.
These transients are dependent on the control parameters in
our system.

Typical parameters that are fixed during our simulations
are surface tension � and viscosity �. We keep
�=30 mN/m and �nw=�w=0.1 Pa s which gives the viscos-
ity ratio M =1. In order to set the capillary number, we con-
trol the overall flow rate Qtot.

In this paper we consider networks of sizes up to
1024�1024 nodes. We wish to analyze the distributions of
clusters with different Ca and different system sizes.

At the beginning of the simulations, the network is segre-
gated into one part of nonwetting fluid and one part contain-
ing only wetting fluid. At the start of the simulation the non-
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wetting fluid will start to invade the wetting fluid part.
Depending on the capillary number it will either start a vis-
cous fingering behavior for high Ca or an IP process when
the capillary forces dominate. The latter case is visualized in
Fig. 2 where the drainage takes place in the upper part of the
system. In the early stages presented in the figure, a “belt” of
nonwetting �black� fluid spans the system in horizontal di-
rection. This “belt” is an initial configuration chosen by us
and will be referred to later in this paper.

On the other hand, wetting fluid will enter the original
nonwetting region from below, pushing the nonwetting fluid
in the advancing direction. This displacement of nonwetting
fluid in favor of the wetting happens in a pistonlike manner.
There are some trapped regions left of nonwetting fluid, but
these are smaller than the trapped wetting clusters in the
other end of the model. Since the nonwetting front fingers
advance more rapidly than the wetting, more compact propa-
gating front �29�, it will sooner or later catch up with the
front of the advancing wetting fluid. At this point there will
be a competition between the two different advancing fronts.

When the system reaches steady state there will be a mix-
ing of the two phases. This mixing is dependent on both Ca
and the saturation of fluids. If the difference in the saturation
of fluids is large, one of the phases will span the system
entirely, in steady state, with a large cluster. How large this
difference needs to be in order to get a spanning cluster
depends on the capillary forces and the structure of the net-

work, i.e., the porosity. If the capillary forces dominate over
the viscous ones, the single phase pressure Ps, according to
Darcy’s law,

Q

�
=

k

�


Ps

L
, �7�

where L is the system length along the single phase gradient

Ps, will be significantly smaller than the total pressure gra-
dient. In this case if there is a spanning cluster of one fluid it
will be much easier for the fluid to move inside this cluster
because of the high capillary pressure threshold in un-
occupied tubes. As a consequence once a spanning cluster
evolves, the total pressure will drop and one phase stays
immobile or trapped.

Since the total flux is constant and the capillary pressure
will vary with time as menisci configurations change, the
global pressure will fluctuate. However, when the system
reaches steady state, the pressure will fluctuate around a
mean value. How long it takes before our system reaches
steady state is a matter of the initial configuration of the two
fluids. As the pressure relaxes around a mean value the frac-
tional flow of each fluid will settle. The nonwetting fractional
flow is defined as Fnw=Qnw/Qtot and the wetting fractional
flow is Fw=Qw/Qtot.

It has been shown in previous work �10,13� that Fnw de-
pends on both the capillary number and the saturation Snw of
the nonwetting fluid. For high values of Ca, the curve of Fnw
will behave almost linearly with respect to Snw, while in the
case of very small Ca we will get regimes where one fluid is
almost immobile. This feature was also found to be indepen-
dent of system size.

For steady-state flow we are only able to obtain a totally
immobile regime or a dynamic regime where clusters rear-
range themselves continuously. The first situation can be
characterized as traditional invasion percolation where cap-
illary forces dominate. When a percolating cluster arises, the
structure stays static as long as no global parameters are
changed. There will be a sudden drop in global pressure P as
no capillary barriers will have to be overcome to sustain the
global flow rate.

In the opposite case, clusters of fluid move, fragment, and
coalesce in an equilibrium process with a global pressure
fluctuating around a mean value. This is true for the viscous
case where clusters are not trapped inside a growing perco-
lating cluster. However, we report in this paper that this is
also the case in a steady-state situation even for very low Ca
which should indicate that capillary forces dominate.

If, on the other hand, Ca is large and viscous forces domi-
nate, we will need a much larger difference in S to get a
spanning cluster. This is because trapping of fluid is less
likely to happen and therefore large clusters are more vulner-
able to fragmentation through creation of bubbles. In the
extreme case, where there are no capillary forces at all, a
homogeneous mixing will occur.

Pressure development

For small Ca and subsequently large influence of capillary
forces, the pressure buildup is initially slow. A regular struc-

FIG. 1. Schematic figure that shows the interpretation the bipe-
riodic boundary conditions mean to our simulations. In order to
model a situation deep inside a natural reservoir in steady state, we
must consider the system size as a small part of a greater system.
Statistically, it is the same fluid configurations entering the element
as are leaving it. This is illustrated in the upper figure. The way we
consider our system is shown on the lower figure where the two-
dimensional system is mapped onto a three-dimensional torus.
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ture of the fluid clusters will decrease the global pressure
since the capillary part of the global pressure is dependent on
the overall structure and the single-phase pressure Ps� Pc.

For low capillary numbers the nonwetting fluid will
be blocked in the area around the nodes due to the capillary
barriers of the tubes. Wetting fluid will therefore in large
parts of the system be immobilized. This trapping of

fluid gives a lower fractal dimension D̃ of the invading IP
structure.

For low Ca, the drainage of the IP part will eventually
meet the compact imbibition front of the wetting fluid due to
biperiodic boundary conditions. As long as the source of the
drainage transient has an intact “belt,” as shown in Fig. 2, in
the direction normal to the flow direction, the invading front
will move through bursts in the local pressure. These have a
well-defined distribution �14�. This regime is seen in Fig. 3
early in the pressure evolution as a region with a slowly
increasing mean pressure.

When the first nonwetting fingers start to coalesce with
the stable displacement of the wetting fluid after having com-
pleted a turn along the torus, a competition between two
different processes arises. If the percolating nonwetting
cluster is not sustained and subsequently broken, Pc will
increase.

Eventually the initial IP cluster will break up and frag-
ment into smaller clusters as shown in the third picture of
Fig. 2. When there is no initial structure left in the system,
the pressure saturates around a mean value with larger fluc-
tuations than the previous case with the small bursts.

The pressure development in Fig. 3 can be divided in
three different segments. For this case where the injection
rate is slow, the first segment describes an IP regime where
the Pc only describes local capillary fluctuations for the me-
nisci movement along the front. The trapped clusters of wet-
ting fluid will have little effect on the effective viscosity of
the nonwetting fluid and the front is not saturated.

FIG. 2. �Color online� Four different stages of a low Ca flow configuration with viscosity match M =1 Ca=3.2�10−5 implies a
capillary-dominant regime. The different snapshots of the flow patterns are taken at t=5000 s, t=10 000 s, t=15 000 s, and t=25 000 s. The
system size is 128�128 with a Snw=0.5. The largest connected cluster is colored red in the online version of the article. The two first
snapshots correspond to the first regime of the pressure in Fig. 3. In the third snapshot some of the initial configuration is still left and the
pressure is building up according to Fig. 3. The last one is in the steady state regime where every initial structure has vanished.
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In the second segment we see a drastic increase in 
P.
Since the system is having the same injection rate and there-
fore is governed by capillary effects, this means that the
effective dynamic viscosity �nw has increased and the vis-
cosity ratio M 
1. A qualitative explanation for this increase
in viscosity can be seen in connection to the reduced perme-
ability of the invaded, wetting region caused by trapped non-
wetting clusters left behind by the compact wetting front.
The nonwetting front has reached saturation width ws. The
result is a more stable front, and it was pointed out by Aker
et al. �15� that Pc is proportional to the height difference in
the front

Pc � 
h�, �8�

where �=1.
In the third and last segment, the flow has reached steady

state. The fluctuations in Pc are larger and the mean value
higher due to the unstructured pattern of fluids.

IV. STEADY-STATE DISTRIBUTIONS

In this section we look particularly at the distribution of
nonwetting clusters. Because of the capillary barriers the
nonwetting fluid has a much higher tendency to occupy pore
volume near the nodes rather than around the throats in the
network. Due to volume conservation of wetting fluid, this
will block the throats and create loopless fingers of nonwet-
ting fluid. Movement of trapped clusters must occur, and the
steady-state fragmentation and merging of nonwetting clus-
ters N�s , t� is

�tN�s,t� = ��tN�merging + ��tN�frag = 0. �9�

A. Distribution of clusters

The distribution of clusters depends on size. Fragmenta-
tion and merging of clusters in various dimensions are de-
scribed, e.g., in Refs. �16–18�.

At steady state there will be a typical size s* of the clus-
ters, and clusters of size s�s* are very rare. The distribution
of clusters N�s ,L� consists of both a regular and a singular
part, N�s ,L�=Nreg�s ,L�+Nsing�s ,L�, and for saturations Snw

close to or equal to a critical saturation Sc, the singular part
of N�s ,L� will dominate.

Based on analogy to percolation and finite-size scaling
�25�, we assume the general expression for the singular dis-
tribution to be

Nsing�s,L� � L�s−�f� s

s*� , �10�

where f�x� is a cutoff function decaying faster than any
power law for x�1 and is constant for x�1. The exponent
� which governs the system size dependence of Nsing,
has the value �=d in pure percolation. We have it here
undetermined.

When the clusters have a fractal dimension D, the typical
size s*� lD, where l=min�L ,��, where � is the correlation
length. For large system sizes, the area A the clusters occupy
is

A = ��

sN�s,L�ds = ��

s�Nreg + Nsing�ds = Areg + Asing,

�11�

and the singular part scales as

Asing � L���

s1−�f � s

s*�ds = L��s*�2−���

x1−�f�x�dx .

�12�

The lower limit of Eq. �12� converges when we exclude
arbitrary small clusters, and as a result

Asing � L��s*�2−� = L�+�2−��D, �13�

when we use that s*�LD near critical saturation.
Long before steady state, the nonwetting fluid forms IP

patterns, and the total area A�s*. The saturation of the in-
vading, nonwetting fluid, then depends on the fractal dimen-
sion D and will scale locally as �19�

Snw � Lloc
D−d, �14�

where Lloc is limited to the region where the defending fluid
is purely wetting. Due to the incompressibility of the two
phases, trapped fluids around the hull of the spanning, invad-
ing cluster causes the saturation of invading fluid to decrease
even more as the system size L is increased.

We have that A=Asing locally because this is in the pure IP
regime, and there are no fragments of nonwetting fluid. Fol-
lowing Meakin �20�, the scaling of the singular cluster sur-
face is

Asing = ��

sNsing�s,L�ds � Ld��

s1−�f� s

s*�ds , �15�

which gives Asing�Ld+�2−��D�LD and

� =
D + d

D
. �16�

FIG. 3. Dynamic evolution of global pressure in a 128�128
system at Ca=3.2�10−5 and M =1. In the initial phase of the flow
evolution there is a small buildup in pressure, but when the wetting
front breaks through the initial belt of nonwetting fluid the increase
in pressure is violent. At the last, steady state, regime the fluctua-
tions are approximately five times larger than in the first regime.
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In percolation, the fractal dimension of a spanning cluster
is D�p= pc�=91/48 giving �	2.05. In the regime where we
have invasion percolation the area of wetting defending clus-
ters behaves as

A = ��

sN�s�ds � LD��

s1−�f� s

s*�ds . �17�

It was found that for IP structure, A grows as Ld, which
imposed a ��2 and A�LD+�2−��d�Ld. This gives �=1
+D /d and with a fractal dimension D=1.82 with trapped
wetting clusters, this gives �=1.91 for the distribution of
wetting clusters.

When steady state is reached the mean saturation of the
two phases stays constant over the entire system and every
pattern created by the transients is wiped out. We write the
nonwetting saturation as

Snw = ��

snsds , �18�

where ns=L−dN�s ,L�. According to Eq. �11� we then get con-
tributions to Snw both from a regular and singular part of ns.
Since Snw is constant and the spanning IP cluster is broken
up, the probability that a given area fraction of nonwetting
fluid is attached to the spanning cluster changes from unity
to

P� � �Snw − Sc�� � L−�/� for Snw � Sc. �19�

We take finite-size scaling into account and the correlation
length �� 
S−Sc
−� when Snw is chosen not to be far from Sc.

The singular contribution to P� then gives the following
relation between critical exponents

�

�
= �� − 2�D + d − � � 0, �20�

since ��0 and ��0, which gives

� � 2 −
� − d

D
. �21�

From this, we can have a value of ��2, if the exponent
��d. In percolation where �=2 we must have a �
2 in
order to ensure a positive �
0.

When we look at the probability ns of having a cluster of
size s in the limit of L→� it must approach an asymptotic,
constant value. Since ns,sing�ns and

ns,sing � L�−ds−�f� s

s*� → const � L�−d, �22�

as L→�, and hence s*→�, this means that ��2 for finite s.
It is clear that our situation differs from ordinary percolation.

B. Evolution of wetting clusters

It has been shown both experimentally and in numerical
studies that the width of an invading nonwetting front wnw
depends both on Ca and the time t of the evolution. The front
width w of the invading front is calculated as the standard
deviation of number of points n�y� belonging to the front at a

distance y from the average position of the same front. It has
been proposed that wnw scales width time as

w = t�dh�t,Ca� , �23�

where h�t ,Ca� is a crossover function. When the width of
the front has reached saturation, i.e., at large time scales
t�w1/�d, the saturation width ws is no longer dependent on
time and ws is purely a function of Ca �21�.

At low Ca, the front is wide and trapped clusters of wet-
ting fluid exist on many different length scales. This situation
is best described as IP with trapping, with a fractal dimension
D=1.82 �22�. The distribution of these wetting clusters is
shown in Fig. 4. We see a significant difference in the scaling
at different times. The smallest exponent � according to Eq.
�10� is �	1.7 which is consistent with the experimental find-
ings by Frette et al. �21�. At this point there is a cutoff for
large clusters as these have not yet had the time to form. In
the latter case �	1.9 which is in more correspondence with
the scaling proposed by Meakin �20� in Eq. �17�. When the
system is in steady state, the wetting clusters are no longer
trapped and the largest wetting clusters will break apart.

As Ca increases, the nonwetting front approaches a quali-
tatively more compact displacement �23,24�. Looped fingers
will also occur since the capillary barrier is weak and there
are no large, immobile wetting clusters as shown in Fig. 5.

C. Effect of saturation

For a certain saturation level Snw of nonwetting fluid, at
the equilibrium described in Eq. �9� the nonwetting fluid will
percolate the system. We assume as in percolation theory
�25� the singular distribution of clusters to be

Nsing�s� � s−� exp�−
s

s*� . �24�

Since s*��D� 
Snw−Sc
−�D, we can write the typical clus-
ter size in means of saturation and get s*� 
Snw−Sc
−1/�. The

FIG. 4. Distribution of wetting clusters near the nonwetting
front at different stages of evolution. The earliest stage ��� has a
slope of 1.71. The cutoff here is due to lack of larger clusters that
will evolve at later stages. As time increases ���, the slope is now
1.91, while at steady state ��� the power-law distribution is com-
pletely overrun by the cutoff function.
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exponent �=1/ ��D�, and for simplicity we define
c� 
S−Sc
1/�.

We have performed numerical tests of the above presump-
tion with a matching viscosity ratio M =1. The tests have
been initiated with both a complete separation of wetting and
nonwetting fluids and a random mixing of the two phases.
The question is whether or not the initial conditions will
affect the steady-state outcome.

If there exists a fluid configuration that stems from the
combined process of drainage and imbibition, the outcome of
the two initial configurations described above should have
the same statistical properties. However, for low Ca we en-
counter difficulties connected to “locking” of immobile con-
figurations due to large capillary barriers. The time steps in
our model become unphysically large. In order to compen-
sate for these effects we apply certain shocks to the system
where the input flow rate is increased drastically for a small
amount of time steps compared to the total number of run
time steps.

We now consider distributions of clusters obtained from
different system sizes and initial configurations. The clusters
are identified through a customized Hoshen-Kopelman algo-
rithm �26�. The mass s of the clusters is a continuous vari-
able, and in order to make a histogram we bin the identifed
clusters with a bin size 
s=smax�1/10 000. The largest
cluster smax is five orders of magnitude larger than the unit
size s=1.

As described in previous sections, the case where the two
phases are completely separated gives intermediate configu-
rations with different cluster distributions. The distributions
depend on whether the fluid is invading or withdrawing from
a region. In a study by Wagner et al. �27� experiments and
simulations of fragmentation of nonwetting fluid were car-
ried out. The case here was to take a full IP pattern, and
reverse the fluid current so that the flow regime was changed
from drainage to imbibition. A result to note in Ref. �27�, is
that when the nonwetting saturation of the IP pattern at
breakthrough follows the relation in Eq. �14� as expected, the

FIG. 5. �Color online� Four different snapshots of configurations with different Ca taken at approximately the same time. In the upper left
figure Ca=3.2�10−5. For the next three figures Ca is much higher, Ca=1,10, and 100. The largest connected cluster is colored red in the
online version of the article. The nonwetting front is now compact with high degree of fragmentation. The viscosity ratio of the two fluids
is M =1, but the effective viscosity may be altered due to decreased permeability caused by fragmentation of the clusters.
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final saturation of nonwetting fluid seemed to be independent
of system size.

In traditional simulation and experiments of imbibition
and drainage of different fluids, there is a inlet flow of one
phase into an already fully saturated region of another phase.
In our simulations, the effective saturation of the two phases
are constant throughout the entire experiments.

The percolation threshold for bond percolation in a regu-
lar square lattice is pc= 1

2 . The distribution of clusters in the
system referred to in Fig. 2 with Snw=0.5 has a clear cutoff
for large cluster sizes s. It is therefore clear that—in order to
see clusters of nonwetting fluid with size in order of the
system size—we must have a larger saturation Snw and
Sc
0.5, as shown in Fig. 6.

With a nonwetting saturation Snw=0.69 we see a tendency
towards a power-law distribution of cluster size s. A closer
study at the results in Fig. 7 reveals a value of the exponent
�−1=0.91±0.03 from the cumulative distribution N�s�
s�
while a value of �=1.93±0.05 slightly lower than 2 is drawn
from the ordinary distribution of N�s�. This is not very far
from the prediction of ordinary percolation and consistent
with predictions concerning similar dynamic models �28�
which indicate a � significantly smaller than 2.

It is hard to pinpoint the exact value of Sc in a system, but
analysis of the cluster moments behavior gives us clear indi-
cations of the whereabouts of Sc.

D. Scaling analysis

In order to study scaling behavior in the fragmentation
and merging process of Eq. �9�, we examine different mo-
ments of cluster distribution.

The kth moment is defined as

Mk = ��

sknsds , �25�

and ns=ns,reg+ns,sing, the moments will consist of both a
regular and a singular part. We use percolation methods �25�

to extract information of critical saturation and critical expo-
nents.

Since the data we analyze are divided into discrete histo-
gram bins we substitute the integral of Eq. �25� with a sum
and get for the singular part

Mk,sing = �
s

skns � L�−2c�−1−k, �26�

with the assumption that �−2�0, where � was defined in
Eq. �10�.

The total kth moment is �17�

Mk = Ak + Bkc + Ckc
�−1−k, �27�

where the last term stems from the singular part and domi-
nates for k�2, since the finite-size contribution from Eq.
�26� is small.

FIG. 6. Cumulative distribution N�s�
s� of nonwetting clusters
at steady-state flow regime for 128�512 system at Ca=3.2
�10−5. The results are from a simulation with Snw=0.5 and the
clear cutoff at high s indicates that the critical saturation Sc
0.5.

FIG. 7. Log-log plot of distribution of nonwetting clusters
at Snw=0.69. The upper figure shows the distribution N�s� for a
system of size 1024�1024. The distribution N�s ,L� exhibits a
power law with a slope of 1.93±0.05. In the inset, a data collapse of
different system sizes is shown with a size dependency of �=1.8.
The lower figure shows the cumulative distribution N�s�
s ,L� for
different system sizes L�L going from L=256 to L=1024. The
distributions have slopes around 0.91±0.03. This combined with
the data in the upper figure indicates a value of the critical exponent
�=1.92±0.04.
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In particular, the second moment M2 is dominated by
M2,sing and

M2 � M2,sing = C2L�−2c�−3 � 
S − Sc
−�3−�/��−��−2�� = 
S − Sc
−�̃,

�28�

when s*�LD near critical saturation. Then ��−2�� gives a
correction to the exponent �= �3−�� /� from ordinary perco-
lation theory, and �̃=�+ ��−2��.

Results from different calculations of M2 for different val-
ues of Ca are shown in Fig. 8. We notice that there are two
regimes in the plot separated by a crossover at a certain value
of 
Snw−Sc
.

This can be understood as finite-size scaling, where near a
critical density pc we apply the finite-size ansatz

� = ���p − pc�L1/�� . �29�

This implies that the effective, critical density peff is

peff =� p�d�

dp
�dp . �30�

Hence, in our case we use this expression with our satu-
ration for the variable p and get

Seff = Sc +
A

L1/� . �31�

Setting this new critical saturation in for Sc in Eq. �28� we
see the two regimes as

M2 � 
Snw − Sc
�̃ for 
Snw − Sc
 �
A

L1/� ,

M2 � const for 
Snw − Sc
 �
A

L1/� , �32�

when only Snw varies and L is constant.

The critical saturations are moving towards larger values
as Ca increases. Since the fluctuations around the critical
saturations are large, it is difficult to establish accurate value
of Sc. However, Fig. 9, with the different values of Seff ob-
tained in Fig. 8, gives a power-law behavior with
�̃=1.95±0.06. This value is significantly lower than the per-
colation value of � but this can be understood partly from the
system size correction �−2�0.

Since the critical value of saturation of nonwetting fluid
decreases with the capillary number, we expect more or less
an approach towards percolation for extremely low Ca. On
the other hand, when viscous forces are totally dominant and
Ca→�, the expected threshold should be around unity. This
expectation is based on the presumption that tiny bubbles of

FIG. 10. Strength of largest nonwetting cluster for Ca→�. The
data indicate a threshold at Snw=0.91 which is lower than unity. We
can explain this by a lower cutoff of small clusters which will be of
significance when operating with no surface tension. The data are
from system size L=512 and taken from the mean of ten different
runs.

FIG. 8. First moment of the largest cluster plotted as a function
of saturations Snw for L=512. The three curves are hence for
Ca=3.2�10−3, Ca=3.2�10−4, and Ca=3.2�10−5. The percola-
tion thresholds are shifted towards higher values of Snw as Ca in-
creases. The transitions are located at approximately Sc=0.675,
Sc=0.7, and Sc=0.725 and hence collapsed.

FIG. 9. Log-log plot of the second moment for different Ca for
L=512. The data are collapsed using the values for Sc obtained
previously. There is only a narrow range where the power law is
valid due to finite-size effects. For Snw�Sc far away from Sc we see
a cutoff and for 
Snw−Sc
�1/L1/� the function approaches a con-
stant. However, the obtained value �̃=1.95±0.06 is reasonable.
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either phase will be overrepresented and effectively break up
large clusters forming out of one fluid phase. Then no span-
ning nonwetting cluster can form, even at very high Snw.

It is of course a matter of view how small we accept such
bubbles to be, because at some point we must regard nodes
to be connected even though microscopic fragments of wet-
ting fluid separate them. These microscopic clusters, which
we disregard in our calculations, do have an effect on Sc as
can be seen in Fig. 10. Here we see Sc=0.91 which is sig-
nificantly lower than unity.

In order to find a value for �, we use the ratio

Mk+1

Mk
=

1

c
, for k � 2. �33�

Then we can easily find an estimate for �, and even though
there is a finite-size correction to the scaling of Mk, this will
vanish when we measure the ratio in Eq. �33�.

The measured value of � from the relation
c� 
Snw−Sc
1/� is shown in Fig. 11. We find �=0.47±0.08,
but this value is dependent of the chosen value of the critical
saturation Sc. This value is arguable. However, the ratio of �̃
and � is assumed to be constant, and hence the value of � in
our simulations. Since D=1/�� we get the relation

�̃� = 3 − � +
� − 2

D
. �34�

There are of course uncertainties connected to the size
effects related to �−2, but with the data collapse in Fig. 7
which suggested a �−2=−0.2 and a fractal dimension for the
nonwetting clusters in the area D=1.82–1.89 �21,27�, the
relation above should give a �	1.97. This is consistent with
our measured �=1.92±0.04.

V. CONCLUSION

In this paper we have presented results of cluster distribu-
tion in a two-phase flow network simulator in two dimen-
sions. Different from most studies of porous flow simulations
in networks, we apply biperiodic boundary conditions. This
allows us to study steady-state conditions which are more
similar to those encountered deep inside natural reservoirs.

The simulations show that there is a crossover from un-
stable front propagation to a compact steady-state flow as the
patterns formed by initial transients are broken up. From the
pressure development in Fig. 3 this change in flow regime
will result in an increase in 
P and a more violent evolution
of burst avalanches. We believe that the fragments of non-
wetting fluid sustain their fractal properties, but the Snw at
which we get spanning nonwetting clusters is dependent on
Ca even though the fractal front is completely dissolved.

The steady-state distribution of clusters is shown to share
many characteristics with that of ordinary percolation when
it comes to critical properties and the extraction of critical
exponents. We find a power-law distribution of nonwetting
clusters near critical saturation. This is obtained regardless of
the initial organization of fluids outside the steady-state re-
gime. Even though �=1.92±0.04 is slightly lower than the
value for pure percolation it is consistent with results ob-
tained from other dynamical models and fragmentation stud-
ies �30�. From the order parameter P�� �S−Sc��, non-
negativity of the exponent �
0 may be ensured even though
��2. This is shown through a finite-size analysis.
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